Почему если я подскольузсь и упаду я скажу бл.. ь. А как вы соотечественников своих в Тайланде видите?

Frau Messer1
В тайланде не была. А вот в Германии вижу, но сложно объяснить как, просто чувствую.anna scharf1
Всего 5 ответов.

Другие интересные вопросы и ответы

Почувствует ли человек, упавший с большой высоты, боль перед тем, как погибнуть от удара о землю?

Алексей Маточкин6

Боль начинает ощущаться в течение одной десятой доли секунды с момента возникновения раздражителя. Так что если человек не умрёт в полёте от страха, ещё как почувствует.

Не знаю, можно ли доверять этому сайту, но там пишут вот что:

«75% из ста упавших с высоты 145 метров со средней скоростью падения 200 км/час встречают смерть в первые несколько секунд или минут после падения.

Если человек падает головой вниз, то он вряд ли доедет до больницы. Проанализировав сто случаев падения с 75-метрового моста «Золотые ворота», медики смогли выяснить характерные травмы, приводящие к летальному исходу: разрыв сердца и легких, массивный ушиб легких, повреждение крупнейших кровеносных сосудов, множественные переломы ребер. (Уверена, что это больно).

Если приземление произошло на ноги, то есть вероятность того, что человек останется жив и количество травм значительно сократится.»

В общем, скорость умирания будет сильно зависеть от высоты, угла падения, наличия препятствий на пути и твёрдости поверхности приземления. 

В связи с вышеизложенным считаю, что если человек после падения с большой высоты проживёт минуту, эта минута покажется вечностью.

Катя Гербутова58
Всего 6 ответов.[my_custom_ad_shortcode1]

Придумай 10 отмазок не пойти гулять с парнем/девушкой) думай теперь!)))

Гость3
1. Милая, я заболел, температура, кашель, грипп, и т.д и т.п. лечусь я.
2. Сегодня не могу, мамка сказала сиди дома, извини.
3. Ты ебанутая? Там — 30. Встретимся в мае.
4. Прости, но не выйдет сегодня погулять, я уезжаю к родственникам( или они ко мне приезжают).
5. У меня курсовой( если задан курсовой проект, да и на сессию всё спихнуть можно)
6. Ну или просто сказать, мол много дел, не могу я сегодня нанана, там дальше по её вопросам придумать ответы.
7. Сказать, что плохо собаке(коту) умирает, не могу бросить, все любят животных должно прокатить.
8. Можно в принципе тупо упасть на мороз, ссора будет по-любому но если на карте что-то действительно важное, тогда откупишься.
9. Найди грязь, нахуярь на лицо, готово, вы восхитительны она не захочет никуда идти.
10. Умереть. (Отмазка автоматом)
Λ R E Λ 4:2045
Всего 1 ответ.

Как спасти человека, который неизбежно упадёт с 7 этажа (см. подр.)?

Ситуация такая (сверхсложная): 7 этаж. У человека обвалился балкон. Сам человек обычного телосложения (слегка худенький). И он висит, но Вы увидели, что его одна рука соскользнула и вот-вот, через пару секунд соскользнёт вторая, и он неизбежно упадёт в любом случае и зацепиться ни за что не сможет (все нижние балконы застеклены). На дворе лето. Кругом асфальт. На Вас надета лишь лёгкая одежда (футболка, брюки и т.п.) ничего смягчающего нет, даже машин (хотя это бред уже несу), людей поблизости тоже нет. Точнее есть, но их расстояние до ужасной ситуации слишком большое (добежать и что-то сделать не успеют). Те, кто далёк от ужасной ситуации, есть средства вызвать скорую помощь. У Вас так же имеется мобильник. И самое главное то, что Вы только вот подбежали к месту сложившиеся ситуации (к месту, куда он упадёт).

Ситуация крайне сложная, но в жизни всякое может случиться (тфу-тфу конечно). И вот вопрос: что в такой ситуации сделать, чтобы хоть чуть-чуть был какой шанс спасти человека, даже если он сильно покалечится?

Честно скажу, я сам нахожусь в раздумье…

ВНИМАНИЕ! В моих вопросах будьте пожалуйста вежливы! Грубые ответы/комментарии, оскорбления (правила 9.4) и неверно обоснованные минусы будут немедленно отправлены на рассмотрение администрации на удаление, с последующим для Вас штрафом! Не нравится вопрос/ответ – «пройдите» пожалуйста мимо! Заранее благодарю за понимание.

-EMPERIO-3

Как-то была информация, что один мужчина сумел поймать девочку, выпавшую то ли с пятого, то ли как раз с седьмого этажа. Девочка получила ушибы, а он выбил себе все суставы в руках, но девочку удержал. Об этом много говорили по ТВ, писали в печатных СМИ. Случай конечно уникальный, да и совпадение, что именно он оказался в том самом месте, почти чудо. Но он в прошлом был спортсменом, занимался штангой и в информации говорилось, что он смог спасти девочку только потому, что сумел занять правильную позу и сгруппировать нужные мышцы и т.д.. И что если бы на его месте был простой человек, пусть даже сильный физически, то скорее всего ничего бы не вышло. Так, что скорее всего возможное моё например участие в таком случае, привело бы к гибели нас обоих или как минимум к очень серьёзным обоюдным травмам и к инвалидности. Но если честно, то я даже не знаю, как бы поступил в таком случае. Ведь одно дело рассуждать об этом, и совсем другое оказаться в таком положении в реальной жизни. Но каких-то экстренных способов спасения падающего человека, кроме как попробовать поймать или смягчить падение, подставив руки, — я не вижу.

Андре­й2
Всего 8 ответов.

1. Почему творчество Н. Пуссена называют вершиной классициз­ма в живописи?

Что явилось причиной провозглашения культа этого мастера? Какой тематике и почему он отдавал предпочтение? Смогли бы вы доказать справедливость оценки французского художника Ж. Л. Давида, говорившего о Пуссене как о «бессмертном» мастере, «увековечившем на холсте самые возвышенные уроки философии»?
2. Пуссен отмечал: «Для меня не существует мелочей, которыми можно пренебречь… Моё естество влечёт меня искать и любить вещи прекрасно организованные, избегая беспорядочности, которая мне так же противна, как мрак свету». Какое воплощение находит этот прин­цип в творчестве художника? Как он соотносится с выработанной им теорией классицизма?
Guest3

Он как никто другой изображал природу. Так же в гео картинах всегда присутсвуют мифические герои. Персонажи античной мифологии выступают здесь как символ одухотворённости мира. Ту же идею выражает и композиция пейзажа — простая, логичная, упорядоченная. Он разработал новую систему написания пейзажа и его композиции. В картинах чётко отделены пространственные планы: первый план — равнина, второй — гигантские деревья, третий — горы, небо или морская гладь. Разделение на планы подчёркивалось и цветом. Так появ

Гость2
Всего 1 ответ.

Почему электроны не падают на ядро?

Гость14

Всё дело в том, что на таких маленьких масштабах, как размеры атомов и меньше классическая механика, являющаяся по существу лишь приближением, работающим на масштабах пылинок и выше, перестаёт верно описывать механическое поведение частиц.

Квантовая механика утверждает, что электроны (и другие микрочастицы) описываются волновыми функциями, определяющими лишь вероятность обнаружить электрон в заданной точке. И в такой системе, как атом, электроны могут иметь лишь фиксированные энергии (занимать фиксированные энергетические уровни) — в атоме они как бы покоятся на этих фиксированных энергетических уровнях и потому не излучают. Картинки вида электронов (правильнее их уже называть электронными оболочками) можно увидеть на школьных уроках химии — это так называемые s-орбитали, p-орбитали и т д.

Это простой ответ, но ничего не объясняющий. Поэтому если автору хочется подробностей, то предлагаю читать текст дальше.

Согласно классической электродинамике любая ускоренно движущаяся заряженная частица должна излучать электромагнитные волны. А в планетарной модели атома Резерфорда (описывающей атом как структуру, состоящюую из положительно заряженного тяжёлого ядра в центре и движущихся вокруг него отрицательно заряженных лёгких электронов) электрон действительно движется с ускорением, поскольку вращается вокруг ядра. Классическая (неквантовая) электродинамика предсказывает, что т.к. эти непрерывно излучаемые электроном электромагнитные волны уносят с собой энергию электрона, то ему следовало бы упасть на ядро, т.к. теряя свою энергию, он должен сближаться с ядром.

Справиться с этим противоречием впервые попытался Нильс Бор, постулировав два факта, никак не объясняя их происхождение: Во первых он заявил, что в отличие от планет солнечной системы, электроны могут пребывать долго лишь на орбитах, на которых они имели бы определённую заданную энергию. А во вторых излучение электромагнитных волн может происходить лишь при переходе электрона с одной такой «орбиты» на другую, на которой он имел бы меньшую энергию.

Несмотря на то, что в чём-то эти постулаты соответствовали действительности, т.к. они по прежнему учитывали принципы классической механики, они приводили к некоторым противоречиям в теории и к тому же ни откуда не следовали. (Заглядывая вперёд сообщу, что противоречие заключалось в том, что эти постулаты могли быть описаны только появившейся уже позднее квантовой механикой, но само движение частиц по прежнему описывалось классической, в рамках которой эти постулаты являются чем-то чуждым ей, не выводящимся из неё и даже противоречащим ей. Это приводило к предсказанию неправильных эффектов, не наблюдавшихся в экспериментах. Был понятно, что мир нуждается в теории, в рамках которой постулаты Бора были бы следствием этой самой теории и что классическая механика нуждается в пересмотрении)

Разрешить эту проблему в 20 — 30 годы 20го века смогла развиваемая ещё молодыми в тот момент физиками (такими как Поль Дирак, Вернер Гейзенберг, Луи Де Бройль и др.) новая теория — Квантовая механика.

Квантовая механика разительно отличается от классической. Однако при переходе к макромасштабам превращается в классическую и в её силах описать принцип работы транзистора, решить противоречие с излучением электронов в атоме, объяснить уже известную из экспериментов на тот момент корпускулярно-волновую природу света, а так же объяснить дискретные спектры излучения атомов химических веществ, твёрдо опровергающие понимание физики микромира тех времён. А если использовать ещё и специальную теорию относительности — предсказать такую чисто квантово-механическую характеристику частиц, как спин, И это ещё далеко не всё, на что она способна.

Всё дело в том, что в квантовом мире (на микромасштабах) механикой частиц управляет не уравнение Ньютона, а так называемое уравнение Шрёдингера. Для решения накопившихся в механике проблем пришлось основательно пересмотреть понимание понятия измерения и взгляда на то, что такое частица.

Руководствуясь волновым поведением света в опыте Юнга, физики пришли к выводу, что распространяется свет как волна. Это позволило описать интерференционную картину, возникающую в упомянутом опыте. А соображения Макса Планка об излучении абсолютно черного тела и исследование Эйнштейна, касающееся фотоэффекта, твёрдо утверждали, что поглощаются и излучаются «порции» света дискретно — как частицы. (В то время как синтез классической механики и электродинамики описывал непрерывное излучение и поглощение электромагнитных волн ускоренно движущимися заряженными частицами. На макромасштабах порциальность или иначе — корпускулярность излучения просто становится незаметной, поскольку порции очень маленькие и приборы с низкой точностью смогут увидеть лишь непрерывный спектр).

Математически проблему можно решить, постулировав корпускулярно-волновую природу света, обнаруженную в эксперименте. Волновая природа закладывается в вид уравнения исходя из соображений получения интерференции на двух щелях в опыте Юнга и ещё некоторых экспериментов, утверждающих, что свет распространяется как волна. Корпускулярность решается элегантным способом — переходом к операторному методу описания физических величин. Операторный метод подразумевает, что состояние любой частицы описывается некоторой функцией, а теоретически рассчитать её физические параметры можно действием на эту функцию соответствующих операторов этих физических величин. (У каждой физической величины в квантовой механике есть свой оператор). Сам вид операторов строится таким образом, чтобы описание полностью сводилось к тому, что наблюдают в экспериментах. Переход от обычного описания механики к операторному называется процессом квантования теории.

Впоследствии аналогичные эксперименты были поставлены и с электронами, в которых была обнаружена и их корпускулярно-волновая природа. В связи с чем Луи Де Бройль понял, что на фундаментальном уровне микрочастиц корпускулярно-волновой дуализм является общим свойством любой материи. (На сегодняшний день понимание природы материи углубилось ещё больше. И сегодня мы уже понимаем, что любая материя представляет собой квантовые поля)

К сожалению, очень сложно без математики объяснить соображения, из которых следуют корпускулярно-волновой дуализм и теоретическое объяснение странного поведения микрочастиц. Поэтому худо-бедно я попробую объяснить эту математику. Но не сильно искушённый читатель может пропустить следующий абзац полностью, дабы не пугаться:

______________________________________________________________

Оператором называется такая математическая сущность, которая (определение сильно упрощено) при действии на функцию выдаёт какую-то функцию.

То есть если G — оператор, а Ф и Y — функции, то если GФ = Y, то G можно считать оператором.

Примером оператора может служить так называемый оператор дифференцирования G=d/dx.

Тогда если Ф = sin(x), а Y=cos(x), то GФ = dsin(x)/dx = cos(x) = Y.

Далее существует такое понятие, как задача на собственные функции и собственные значения.

Собственной функцией Y оператора G называется такая функция, что GY = hY. Где h — обычная константа. (Обратите внимание, что результат действия G на Y пропорционален Y если Y — собственная функция).

Константа h при этом называется собственным значением. Вся прелесть использования операторов заключается в том, что собственные значения h этих операторов распределены дискретно. То есть они могут принимать лишь конкретные дискретные значения — например 1,2,3…

Квантование теории сводится к тому, что сами частицы (распределение вероятностей обнаружить частицу в заданной точке) теперь начинают описываться собственными функциями операторов, которые зовутся волновыми функциями. А собственные значения являются физическими величинами.

Так, например, если задана некоторая волновая функция электрона Y, являющаяся собственной функцией оператора импульса P, то определить физический импульс электрона можно, подействовав оператором P на Y: PY=hY. Тогда h — физический импульс, который экспериментатор зарегистрирует в опыте.

То есть физические величины, характеризующие частицы (такие как импульс и энергия) определяются видом самих волновых функций (грубо говоря видом функции вероятностей обнаружить частицу в той или иной точке). Или говоря иначе — физические параметры частицы влияют на вид волновой функции частицы. (но не только они. Поле, в котором находится частица тоже оказывает влияние на вид волновой функции)

Точно так же энергии электронов в атоме могут иметь только дискретно распределённые фиксированные величины, являющиеся собственными значениями оператора энергии H.

Отсюда следует, что любая электромагнитная волна на квантовом уровне может излучаться лишь дискретными порциями энергии. Поскольку каждая такая порция излучается при переходе электрона в атоме из состояния с большей энергией в состояние с меньшей. А энергетические состояния (уровни), которые может занимать электрон в атоме так же распределены дискретно.

Следовательно и разности между энергетическими уровнями тоже будут распределены дискретно, а следовательно, т.к. излучаемая электромагнитная волна может иметь по закону сохранения энергии только энергию, равную разности между энергией более верхнего уровня (с которого перескочил электрон) и более нижнего ( на который перескочил электрон), и т.к. эти разности так же распределены дискретно — то этим объясняется дискретный спектр излучения атомов. Каждая такая электромагнитная волна с одной из возможных дискретно распределённых энергий называется квантом света — фотоном.

В этом и состоит корпускулярность света — в том, что свет излучается не непрерывно, а мгновенными порциями энергии.

Волновая же природа света заключена в том, что волновые функции описывают волны. И распространяются они соответственно тоже как волны

В то время, когда электрон находится на одном из энергетических уровней и никуда не перескакивает (не теряет энергию), согласно закону сохранения энергии он просто не может излучать, поскольку его энергия не изменяется. А поменять энергию электрон может только мгновенно — перескочив с более верхнего уровня на более нижний (т.к. уровни распределены дискретно по энергиям). При этом излучится порция света с энергией, равной разности между уровнями. Вот так всё и устроено.

______________________________________________________________

Важно понимать, что волновые функции, описанные мной в параграфе про математику характеризуют распределение вероятностей обнаружить электрон в той или иной точке.

Я упоминал, что в квантовой механике вместо уравнения Ньютона используется более правильное — уравнение Шрёдингера, получаемое по сути квантованием классической теоретической механики.

И если в классической механике эволюцию системы определяло уравнение Ньютона, то в квантовой её будет определять уравнение Шрёдингера.

Если в уравнении Шрёдингера указать потенциал, в котором находится электрон (например потенциал ядра атома), то оно расскажет, как выглядят волновые функции электронов в этом потенциале ядра — они будут описываться электронными оболочками (s,p,d… орбитали), вид которых можно легко посмотреть в интернете. Для каждой энергии и момента импульса электрона свой вид волновой функции этого электрона.

То есть в отличии от классической механики, квантовая механика просто запрещает электронам непрерывно двигаться в поле ядра — она описывает электроны в поле ядра как покоящиеся волновые функции, являющиеся электронными орбиталями. По этой причине невозможно непрерывное излучение электроном электромагнитных волн, а возможны только дискретные испускания фотонов. «Падение» электрона на более низкий энергетический уровень описывается мгновенным изменением конфигурации электронной оболочки. Сама конфигурация электронных оболочек (вид s,p,d… орбиталей) и определяет энергию и другие физические параметры электрона в поле ядра, т.к. разным волновым функциям соответствуют разные наборы физических параметров, а волновые функции описывают конфигурации электронных оболочек.

Кроме того существует наименьший энергетический уровень с самой маленькой энергией, ниже которого электрон не может упасть по той причине, что у оператора энергии электрона в поле ядра просто нет собственных значений меньше чем это минимальное.

Таким образом представления классической механики о поведении микрочастиц были вкорне не верны. Планетарная модель атома Резерфорда, основанная на классических представлениях о движении частиц, оказалась ошибочной. На самом деле излучение фотонов атомом выглядит как изменение конфигурации электронных оболочек (из состояний с большей энергией в состояния с меньшей), сопровождающееся рождением дискретных порций электромагнитных волн — фотонов. При этом процессе атом излучает только при изменении конфигураций электронных оболочек. И энергия электрона не может перескакивать вниз бесконечно — «упав» на нижний уровень, дальше «падать» она уже не сможет.

Я рассказал несколько больше, чем просил автор. Мне показалось, что это поможет получить правильное представление о квантовой механике. И хотел бы рассказать много чего ещё о самом эксперименте Юнга, туннелировании, нелокальности квантовой механики, редукции волновых функций и принципе построения правильных операторов физических величин и уравнения Шрёдингера. Но ответ и без того получился слишком большим. Поэтому на этом я его закончу. А об остальном буду рассказывать в соответствующих вопросах.

Todd Barry34
На самом деле, если рассмотреть процесс падения в обратном направлении по времени, то можно обратиться к реакции бета-распада нейтрона. То есть аналог реакции объединения электрона и протона. Так вот, самый главный вопрос почему не падает имеет ровно один ответ, для того чтобы это произошло нужно учесть 3 частицу — нейтрино, а если быть более точным, то электронное антинейтрино. На сегодняшний день эти частицы (участники слабого взаимодействия, одного из 4-х известных фундаментальных) одни из самых неуловимых. И могут сравниться по своей способности быть зарегистрированными лишь с гипотетическими частицами темной материи. Попробую иными словами сказать, притягиваются электроны и протоны благодаря электромагнитному взаимодействию (обмен фотонами), а вот объединениться могут в одну частицу только посредством электрослабого (обмен нейтрино). Эффективное сечение электрослабого взаимодействия на порядки меньше чем электромагнитное — то есть почувствовать действие электрических зарядов на больших дистанциях сильно проще, чем зарядов электрослабого взаимодействия.Да, и ко всему прочему справедливо замечено выше всё относительно принципа Гайзенберга и волновой природы элементарных частиц (волны вероятности).Алексей Хохулин1
Всего 5 ответов.
Вам также может понравиться
Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *